Indian Journal of Dermatology
  Publication of IADVL, WB
  Official organ of AADV
Indexed with Science Citation Index (E) , Web of Science and PubMed
 
Users online: 7718  
Home About  Editorial Board  Current Issue Archives Online Early Coming Soon Guidelines Subscriptions  e-Alerts    Login  
    Small font sizeDefault font sizeIncrease font size Print this page Email this page
IJD® MODULE ON BIOSTATISTICS AND RESEARCH METHODOLOGY FOR THE DERMATOLOGIST - MODULE EDITOR: SAUMYA PANDA
Year : 2016  |  Volume : 61  |  Issue : 5  |  Page : 496-504

Biostatistics series module 5: Determining sample size


1 Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
2 Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India

Correspondence Address:
Avijit Hazra
Department of Pharmacology, Institute of Postgraduate Medical Education and Research, 244B Acharya J. C. Bose Road, Kolkata - 700 020, West Bengal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5154.190119

Rights and Permissions

Determining the appropriate sample size for a study, whatever be its type, is a fundamental aspect of biomedical research. An adequate sample ensures that the study will yield reliable information, regardless of whether the data ultimately suggests a clinically important difference between the interventions or elements being studied. The probability of Type 1 and Type 2 errors, the expected variance in the sample and the effect size are the essential determinants of sample size in interventional studies. Any method for deriving a conclusion from experimental data carries with it some risk of drawing a false conclusion. Two types of false conclusion may occur, called Type 1 and Type 2 errors, whose probabilities are denoted by the symbols σ and β. A Type 1 error occurs when one concludes that a difference exists between the groups being compared when, in reality, it does not. This is akin to a false positive result. A Type 2 error occurs when one concludes that difference does not exist when, in reality, a difference does exist, and it is equal to or larger than the effect size defined by the alternative to the null hypothesis. This may be viewed as a false negative result. When considering the risk of Type 2 error, it is more intuitive to think in terms of power of the study or (1 − β). Power denotes the probability of detecting a difference when a difference does exist between the groups being compared. Smaller α or larger power will increase sample size. Conventional acceptable values for power and α are 80% or above and 5% or below, respectively, when calculating sample size. Increasing variance in the sample tends to increase the sample size required to achieve a given power level. The effect size is the smallest clinically important difference that is sought to be detected and, rather than statistical convention, is a matter of past experience and clinical judgment. Larger samples are required if smaller differences are to be detected. Although the principles are long known, historically, sample size determination has been difficult, because of relatively complex mathematical considerations and numerous different formulas. However, of late, there has been remarkable improvement in the availability, capability, and user-friendliness of power and sample size determination software. Many can execute routines for determination of sample size and power for a wide variety of research designs and statistical tests. With the drudgery of mathematical calculation gone, researchers must now concentrate on determining appropriate sample size and achieving these targets, so that study conclusions can be accepted as meaningful.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed11651    
    Printed331    
    Emailed0    
    PDF Downloaded508    
    Comments [Add]    
    Cited by others 20    

Recommend this journal