IJD
Indian Journal of Dermatology
  Publication of IADVL, WB
  Official organ of AADV
Indexed with Science Citation Index (E) , Web of Science and PubMed
 
Users online: 2079  
Home About  Editorial Board  Current Issue Archives Online Early Coming Soon Guidelines Subscriptions  e-Alerts    Login  
    Small font sizeDefault font sizeIncrease font size Print this page Email this page


 
Table of Contents 
BASIC RESEARCH
Year : 2015  |  Volume : 60  |  Issue : 5  |  Page : 427-431
Role of oxidative and nitrosative stress in pathophysiology of toxic epidermal necrolysis and Stevens Johnson syndrome-A pilot study


1 Department of Dermatology, Venereology and Leprology, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
2 Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India

Date of Web Publication4-Sep-2015

Correspondence Address:
Dincy Peter
Department of Dermatology, Venereology and Leprosy, Christian Medical College, Vellore - 632 004, Tamil Nadu
India
Login to access the Email id

Source of Support: Instituitional research grant (FLUID research grant), Conflict of Interest: None


DOI: 10.4103/0019-5154.159617

Rights and Permissions

   Abstract 

Background: Oxidative and nitrosative stress caused by drug metabolism may be a trigger for keratinocyte apoptosis in the epidermis seen in toxic epidermal necrolysis (TEN) and Stevens Johnson syndrome (SJS). Aims: To estimate oxidative damage in the serum and to examine the role of nitric oxide in mediating epidermal damage in patients with TEN and SJS. Materials and Methods: A prospective study was conducted among TEN and SJS patients and controls in a tertiary care center between January 2006 and February 2010. Patients with a maculopapular drug rash without detachment of skin constituted the control group 1 (drug exposed). Patients without a drug rash constituted the control group 2 (drug unexposed). The serum values of protein carbonyls, malondialdehyde, conjugated diene and nitrates were measured. Two-group comparison with the non-parametric Mann-Whitney U test was used. Significance of differences if any was established using Pearson's Chi-square test. Results: Ten patients in the SJS-TEN group (study group), 8 patients in control group 1 and 7 patients in control group 2 were included. More than one drug was implicated in 4/10 patients in group 1 and 3/8 patients in group 2. SCORTEN of 0, 1 and 3 at admission were seen in 2, 6 and 2 patients, respectively. The serum values of protein carbonyls, malondialdehyde, conjugated diene and nitrates were not significantly increased in the study group when compared to the controls. Conclusions: There was no elevation of oxidative stress markers in patients with TEN and SJS as compared to the control population.


Keywords: Keratinocyte apoptosis, oxidative stress, toxic epidermal necrolysis


How to cite this article:
Peter D, Amirtharaj G J, Mathew T, Pulimood S, Ramachandran A. Role of oxidative and nitrosative stress in pathophysiology of toxic epidermal necrolysis and Stevens Johnson syndrome-A pilot study. Indian J Dermatol 2015;60:427-31

How to cite this URL:
Peter D, Amirtharaj G J, Mathew T, Pulimood S, Ramachandran A. Role of oxidative and nitrosative stress in pathophysiology of toxic epidermal necrolysis and Stevens Johnson syndrome-A pilot study. Indian J Dermatol [serial online] 2015 [cited 2021 Sep 20];60:427-31. Available from: https://www.e-ijd.org/text.asp?2015/60/5/427/159617

What was known?
Apoptosis is the cause of keratinocyte death in TEN. The oxidative stress in the keratinocytes caused by various triggers may lead on to apoptosis.



   Introduction Top


Toxic epidermal necrolysis (TEN) and  Stevens-Johnson syndrome More Details (SJS) are severe cutaneous drug reactions of unknown mechanism. Toxic epidermal necrolysis represents the most severe variant of a disease spectrum that consists of bullous erythema multiforme (EM) and SJS and has a mortality rate of 30-40%. [1] Keratinocyte apoptosis has now been established as a major feature in TEN and SJS, with cell death resulting in detachment of the epidermis. Though studies have identified molecules such as the Fas ligand (FasL) and its receptor as well as tumor necrosis factor-alpha (TNF-α) to be implicated in the process, the triggering event inducing apoptosis is currently unknown. FasL is a transmembrane protein from the TNF family that is expressed on the surface of cytotoxic T cells, NK cells, immune privileged cells of the testes and eye, and keratinocytes. On activation of cytotoxic T cells, FasL is expressed on their surface and binds to its receptor on target cells, which activates intracellular caspases, leading to the controlled destruction of the target cell. [2] Other cytokines and molecules, such as TNF-α and nitric oxide (NO), have been implicated in the apoptosis of TEN. [3] Tumor necrosis factor-α has been shown to activate the ''death receptor'' TNF-R1, causing caspase activation and cell death. [3] NO has also been implicated in apoptosis. The role of NO in apoptosis is thought to be due to stimulation of the activity of caspases through the action of p53. [4] Recent studies have shown granulysin as the predominant trigger for apoptosis. [5] The combination of TNF-α, NO, and the resultant elevation of reactive oxygen species may also contribute to resultant oxidative stress and the disruption of the intracellular structures leading on to apoptosis. [6] TEN is initiated either by noncovalent, direct interaction of a drug with a specific MHC I allotype or by covalent binding of a drug metabolite to a cellular peptide, forming an immunogenic molecule. CD8 cells, activated by keratinocytes and APCs expressing specific MHC I and antigen, release INF-☵, causing the activation of macrophages and keratinocytes and perforin/granzyme B and granulysin. Expression of glutathione-S-transferase pi (GST-pi), which is induced by oxidative stress, was found to be elevated in keratinocytes of TEN patients. [7] Oxygen-free radicals have also been shown to induce apoptosis in keratinocytes in culture. It is hypothesized that oxidative and nitrosative stress caused by drug metabolism is a trigger for keratinocyte apoptosis in the epidermis seen in TEN and SJS. This hypothesis was tested in patients with TEN and SJS by the pursuit of the following specific aims.


   Aims Top


  • To estimate oxidative damage in the serum in patients with TEN and SJS
  • To examine the role of NO in mediating epidermal damage in TEN and SJS.



   Materials and Methods Top


A prospective study was conducted in a tertiary care center between January 2006 and February 2010. Patients with TEN, SJS and SJS-TEN overlap were included in the study group after obtaining an informed consent. To ascertain whether oxidative stress was unique to TEN, patients with a maculopapular drug rash without detachment of skin were included in the control group 1 (drug exposed). Patients undergoing minor dermatosurgical procedures and without a drug-induced rash were included in control group 2 (drug unexposed) and their serum was used for biochemical analysis. Patients who did not wish to be included in the study and patients with human immunodeficiency viral infection, hepatitis B and hepatitis C were excluded from the study as these infections are known to induce oxidative stress in tissue.

Protein carbonyls and lipid peroxidation parameters such as malondialdehyde and conjugated dienes and oxidative stress markers, levels of nitrate and nitrite, stable end products of NO were estimated in the serum from all patients. The alterations in protein carbonyl content and lipid peroxidation parameters, serum nitrite/nitrate levels, active metabolites of NO were compared between the groups. The study was approved by the institutional review board.

Measurement of protein carbonyls in serum: Samples were treated with 10mM 2-4 dinitrophenyl hydrazine dissolved in 2N HCl, followed by incubation at room temperature for 1 hour. Trichloroacetic acid (10% final concentration) was then added, followed by centrifugation to pellet the precipitated protein. To this pellet, an equal volume of 1:1 (v/v) ethyl acetate: Ethanol was added. Following centrifugation, the pellet was collected and dissolved in 1 ml of 6M guanidine HCl. Absorbance at 366 nm was then measured and was expressed as nmoles/ml serum.

Measurement of malondialdehyde and conjugated dienes: For measurement of malondialdehyde, samples (200ul) were treated with 1.2 ml of 5% TCA and 0.4ml of 0.8% thiobarbituric acid. The samples were incubated at 80΀C for 1.5 hours. The absorbance was then read at 532 nm, and amount of malondialdehyde formed was calculated from a standard curve prepared using 1, 19, 3, 39 tetramethoxypropane and was expressed as nmoles/ml serum. For conjugated diene measurement, total lipids were extracted from serum, dissolved in 1 ml heptane, and the absorbance was read at 233 nm in a spectrophotometer. Concentration was calculated using a molar absorption coeffi cient of 2.52 × 104 and expressed as μ mol/ml serum.

Measurement of nitrite/nitrate: For measurement of nitrite, nitrate in the samples was first reduced to nitrite, which was then measured by the Griess reaction. Reduction of nitrate to nitrite was carried out using a copper-cadmium alloy, which was prepared by mixing molten copper with cadmium in the ratio 1:9. Filings of the alloy were then prepared, followed by activation as follows: The copper-cadmium alloy filings were washed twice with 100 ml of de-ionized water, followed by two washes with 0.5N HCl. The activated filings were then washed with 0.1N HCl and stored in 0.1N HCl at 2-8 ° C until use. For analysis of nitrate/nitrite, samples were incubated with the alloy filings in carbonate buffer for 1 h at room temperature with shaking. The reaction was stopped by addition of 0.35M NaOH and 120mM ZnSO 4 solution, followed by vortexing. After standing for 10 minutes, the samples were centrifuged at 4000 g for 10 minutes. Aliquots of the clear supernatant are treated with 1% sulfanilamide and 0.1% N-naphthylethylenediamine. After 10 min, the optical density was read at 545 nm in a spectrophotometer.

Statistical analysis

Two-group comparison with the non-parametric Mann-Whitney U test was used to compare the values in the groups. Significance of differences if any was established using Pearson's Chi-square test. SPSS Version 12 for Windows was used for all statistical analyses.


   Results Top


Fourteen patients with SJS/TEN (study group) and 10 patients with a maculopapular drug rash (control group 1) were included in the study. Blood samples of 10 patients who underwent minor dermatosurgery were taken as control. Four patients from the study group, two patients from control group 1 and three patients from control group 2 were excluded from the study as their blood samples were hemolysed. The study patients consisted of 10 patients in the SJS-TEN group (study group), 8 patients in control group 1 and 7 patients in control group 2. [Figure 1] describes the case selection in a flow chart. Majority of patients in the study group (M: F 1:3) as well as in the control group 1 (M: F, 3:4) were females. More than one drug was implicated in 4/10 patients in group 1 and 3/8 patients in group 2. Carbamazepine was one of the most common drug implicated in 4/10 of study group and 2/8 of the control group patients. The drugs implicated in causing the TEN, SJS or drug rash is listed in [Table 1]. SCORTEN of 0, 1 and 3 at admission were seen in 2, 6 and 2 patients of the study group, respectively. Four patients had systemic steroid administration prior to sample collection.
Table 1: Drugs implicated in the study and control group


Click here to view
Figure 1: Flow chart of case selection

Click here to view


The mean values of protein carbonyls, conjugated dienes, malondialdehyde and nitrate levels of all the patients included in the study is shown in [Table 2]. The mean value of malondialdehyde in the control group 2 was elevated as compared to the study group and control group 1. Two-group comparison with non-parametric Mann-Whitney U test showed that there is no statistically significant difference between the serum conjugated diene, nitrates, malondialdehyde and protein carbonyls between the TEN group and the control groups.
Table 2: Demography and mean biochemical parameter in each group


Click here to view



   Discussion Top


Toxic epidermal necrolysis and SJS are characterized by the rapid onset of keratinocyte cell death by apoptosis, a process that results in the separation of the epidermis from the dermis. An immune response to defective drug metabolism has been implicated in the process and studies examining apoptotic pathways in this context have identified interaction between Fas and FasL playing a role. [8] Other studies have shown soluble FasL (sFasL) secreted by peripheral blood mononuclear cells (PBMCs) and perforin and granzyme as playing a major role in apoptosis in SJS and TEN. [9],[10],[11] A recent study has shown secretory granulysin produced by the fully activated cytotoxic T lymphocytes (CTLs), natural killer (NK) cells and natural killer T (NK T) cells leads to widespread apoptosis in SJS-TEN. [5] Various new markers demonstrated in TEN include serum granulysin, high-mobility group box protein 1 (HMGB1), alpha defensins 1-3, thymus and activation regulated chemokine (TARC), Bcl-2 expression in dermal infiltrate and glutathione-S-transferase pi expression in keratinocytes. [12]

Another molecule which could play a role in apoptosis is NO whose role in cellular signaling is now well recognized. Low concentrations of NO generally have a beneficial effect in cellular systems, protecting against cell death and high NO concentrations can damage cellular components and induce apoptosis. The effects of NO on induction of apoptosis in keratinocytes have also been shown to be influenced by free radicals such as superoxide. [13] Toxic effects of NO are generally mediated through formation of reactive nitrogen species such as peroxynitrite, which can be formed in a redox environment with high NO concentrations. [14] NO is produced by one of the three isoenzymes of nitric oxide synthase (NOS). Activity of inducible form of NOS (iNOS) is independent of the calcium concentration and has the capacity to produce large quantities of NO. Expression of iNOS has been demonstrated in the lesional skin of patients with SJS and TEN. [15] It has been shown that activated T cells secrete high amounts of TNF-α and IFN-g, and that both cytokines lead to increased expression and activity of keratinocyte iNOS. The resulting increase in NO significantly upregulates keratinocyte FasL expression, resulting in Fas- and caspase-8-mediated keratinocyte cell death. [16]

It was found that activity of the anti-oxidant enzyme superoxide dismutase (SOD) was increased in all types of non-immediate reactions (including urticaria, maculopapular exanthema and toxic epidermal necrolysis), accompanied by elevations in lipid peroxidation in urticaria and maculopapular exanthema, and carbonyl groups in all types of reactions. [17] However, in the present study, the serum values of protein carbonyls, malondialdehyde, conjugated diene and nitrates were not significantly increased in the study group when compared to the controls. The biochemical values of patients who have received steroids were not different from the values of other patients; hence, exposure to steroids did not seem to have altered the values. The malondialdehyde levels in the control group were higher than the study group and control group 1. Studies have shown oxidative stress markers can be elevated both during surgery and in the immediate post-operative period. [18] This may be the reason for elevation of malondialdehyde in the control group 2. Verma et al. in their study on oxidative stress markers in cutaneous adverse drug reaction found that the mean malondialdehyde levels were raised in the study group as compared to the control group. [19] Fifteen percent of the study group were patients with SJS. Our study did not show elevated levels of protein carbonyl, conjugated dienes, malondialdehyde and nitrates in patients with SJS and TEN. As this was a pilot study with less number of patients, a definitive conclusion could not be drawn from the results of this study. Tissue levels of protein carbonyls, malondialdehyde, conjugated dienes and nitrates would have given a better understanding of oxidative stress. Since a recent study demonstrated that treatment with the anti-oxidant N-acetyl cysteine, or its combination with infliximab, did not appear to reverse the evolving TEN process the role of oxidative stress in conditions such as TEN may be complex and need further detailed evaluation. [20] In our study population, oxidative stress markers were not elevated, hence a role of antioxidants in the treatment of TEN cannot be proposed. Studies with a larger group of patients examining alterations in skin biopsies may be required to ascertain the role of oxidative and nitrosative stress in pathophysiology of TEN and SJS.


   Conclusion Top


Immunopathogenesis of TEN is complex, the end result of which is apoptosis of keratinocyte. Oxidative stress may contribute to keratinocyte apoptosis. Our study could not demonstrate an elevation of oxidative stress markers in patients with TEN and SJS as compared to the control population.



 
   References Top

1.
Schulz JT, Sheridan RL, Ryan CM, Mackool B, Tompkins RG. A 10-year experience with toxic epidermal necrolysis. J Burn Care Rehabil 2000;21:199-204.  Back to cited text no. 1
    
2.
Abe R. Toxic epidermal necrolysis and Stevens-Johnson syndrome: Soluble Fas ligand involvement in the pathomechanisms of these diseases. J Dermatol Sci 2008;52:151-9.  Back to cited text no. 2
    
3.
Nassif A, Moslehi H, Le Gouvello S, Bagot M, Lyonnet L, Michel L, et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J Invest Dermatol 2004;123:850-5.  Back to cited text no. 3
    
4.
Brune B, von Knethen A, Sandau KB. Nitric oxide and its role in apoptosis. Eur J Pharmacol 1998;351:261-72.  Back to cited text no. 4
    
5.
Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med 2008;14:1343-50.  Back to cited text no. 5
[PUBMED]    
6.
Paquet P, Pierard GE. New insights in toxic epidermal necrolysis (Lyell's syndrome): Clinical considerations, pathobiology and targeted treatments revisited. Drug Saf 2010;33:189-212.  Back to cited text no. 6
    
7.
Paquet P, Piérard GE. Glutathione-S-transferase pi expression in toxic epidermal necrolysis: A marker of putative oxidative stress in keratinocytes. Skin Pharmacol Physiol 2007;20:66-70.  Back to cited text no. 7
    
8.
Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Saloman D, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human Intravenous immunoglobulin. Science 1998;282:490-3.  Back to cited text no. 8
    
9.
Abe R, Schimizu T, Shibaki A, Nakamura H, Watanabe H, Shimizu H. Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble Fas ligand. Am J Pathol 2003;162:1515-20.  Back to cited text no. 9
    
10.
Nassif A, Bensussan A, Dorothee G, Mami- Chouaib F, Bachot N, Bagot N, et al. Drug specific cytotoxic T cells in the skin lesions of a patient with toxic epidermal necrolysis. J. Invest Dermatol 2002;118:728-33.  Back to cited text no. 10
    
11.
Nassif A, Bensussan A, Boumsell L, Deniaud A, Moslehi H, Wolkenstein P, et al. Toxic epidermal necrolysis: Effector cells are drug-specific cytotoxic Tcells. J Allergy Clin Immunol 2004;114:1209-15.  Back to cited text no. 11
    
12.
Kapoor S. Emerging mew markers for toxic epidrmal necrolysis. J Intensive Care Med 2013;28:72.  Back to cited text no. 12
[PUBMED]    
13.
Weller R, Billiar T, Vodovotz Y. Pro-and anti-apoptotic effects of nitric oxide in irradiated keratinocytes: The role of superoxide. Skin Pharmacol Appl Skin Physiol 2002;15:348-52.  Back to cited text no. 13
    
14.
Szabo E, Virag L, Bakondi E, Gyure L, Hasko G, Bai P, et al. Peroxynitrite production, DNA breakage, and poly (ADP-ribose) polymerase activation in a mouse model of oxazolone-induced contact hypersensitivity. J Invest Dermatol 2001;117:74-80.  Back to cited text no. 14
    
15.
Lerner LH, Qureshi AA, Reddy BV, Lerner EA. Nitric oxide synthase in toxic epidermal necrolysis and Stevens-Johnson syndrome. J Invest Dermatol 2000;114:196-9.  Back to cited text no. 15
    
16.
Viard-Leveugle I, Gaide O, Jankovic D, Feldmeyer L, Kerl K, Pickard C, et al. TNF-α and IFN-g are potential inducers of Fas-mediated keratinocyte apoptosis through activation of inducible nitric oxide synthase in toxic epidermal necrolysis. J Invest Dermatol 2013;133:489-98.  Back to cited text no. 16
    
17.
Cornejo-Garcia JA, Mayorga C, Torres MJ, Fernandez TD, R-Pena R, Bravo I, et al. Anti-oxidant enzyme activities and expression and oxidative damage in patients with non-immediate reactions to drugs. Clin Exp Immunol 2006;145:287-95.  Back to cited text no. 17
    
18.
Velayutham PK, Adhikary SD, Babu SK, Vedantam R, Korula G, Ramachandran A. Oxidative stress-associated hypertension in surgically induced brain injury patients: Effects of β-blocker and angiotensin-converting enzyme inhibitor. J of Surg Res 2013;179:125-31.  Back to cited text no. 18
    
19.
Verma P, Bhattacharya SN, Banerjee BD, Khanna N. Oxidative stress and leukocyte migration inhibition response in cutaneous adverse drug reactions. Indian J Dermatol Venereol Leprol 2012;78:664.  Back to cited text no. 19
[PUBMED]  Medknow Journal  
20.
Paquet P, Jennes S, Rousseau AF, Libon F, Delvenne P, Piérard GE. Effect of N-acetylcysteine combined with infliximab on toxic epidermal necrolysis. A proof-of-concept study. Burns 2014;40:1707-12.  Back to cited text no. 20
    

What is new?
In our pilot study, serum oxidative stress markers in patients with SJS and TEN were not elevated as compared to the controls. Other pathogenic markers or molecules need to be studied as an inducer of keratinocyte apoptosis in TEN.


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Print this article  Email this article
 
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (414 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Aims
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3004    
    Printed49    
    Emailed0    
    PDF Downloaded104    
    Comments [Add]    

Recommend this journal