Indian Journal of Dermatology
  Publication of IADVL, WB
  Official organ of AADV
Indexed with Science Citation Index (E) , Web of Science and PubMed
Users online: 4231  
Home About  Editorial Board  Current Issue Archives Online Early Coming Soon Guidelines Subscriptions  e-Alerts    Login  
    Small font sizeDefault font sizeIncrease font size Print this page Email this page

Table of Contents 
Year : 2014  |  Volume : 59  |  Issue : 6  |  Page : 630
Titanium allergy: A literature review

Department of Prosthodontics and Implantology, Rishiraj College of Dental Sciences and Research Centre, Bhopal, Madhya Pradesh, India

Date of Web Publication30-Oct-2014

Correspondence Address:
Manish Goutam
Post Graduate Student, Department of Maxillofacial Prosthodontics and Implantology, Rishiraj College of Dental Sciences and Research Centre, Bhopal - 462 036, Madhya Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5154.143526

Rights and Permissions


Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

Keywords: Allergy, contact dermatitis, lymphocyte transformation test, memory lymphocyte immuno-stimulation assay, polyetheretherketone, titanium

How to cite this article:
Goutam M, Giriyapura C, Mishra SK, Gupta S. Titanium allergy: A literature review. Indian J Dermatol 2014;59:630

How to cite this URL:
Goutam M, Giriyapura C, Mishra SK, Gupta S. Titanium allergy: A literature review. Indian J Dermatol [serial online] 2014 [cited 2022 Jan 27];59:630. Available from:

What was known?
Titanium has been widely accepted as intraosseous implant material due to its excellent osseointegration and high resistance to corrosion.

   Introduction Top

Stainless steel was the first metallic biomaterial used successfully as an implant. Later, in 1932, the cobalt-based alloy named Vitallium was developed for medical applications. Titanium and its alloys in past few decades are widely used for dental implants and its prosthesis components. Commercially, pure titanium (CpTi) is used preferentially for endosseous dental implant applications. There are currently four CpTi grades and one titanium alloy specially made for dental implant applications. These metals are specified according to ASTM as grades 1 to 5. Grades 1 to 4 are unalloyed, while grade 5 is alloyed with 6% aluminum and 4% vanadium (Ti6Al4V), is the strongest. [1]

Titanium has high resistance to corrosion in a physiological environment and has an excellent biocompatibility that gives it a passive, stable oxide film; due to this reason, it is considered as the material of choice for intraosseous use in the medical field. [2],[3],[4],[5] Apart from its success there are studies which show titanium as an allergen. [6],[7],[8]

An allergic reaction, or hypersensitization, is defined as an excessive immune reaction that occurs when coming into contact with a known antigen. [9] Titanium to provoke an allergic reaction, must have antigenic properties and must be in contact with the organism. The insertion of titanium implants and their permanence in the human body enhances the amount of internal exposure and it has been proven that titanium ions concentrate in tissues surrounding dental and orthopedic implants, as well as in regional lymph nodes and pulmonary tissue. Concentrations of between 100 and 300 ppm have been discovered in peri-implant tissues, often accompanied by discolorations. [10],[11],[12],[13],[14]

Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

Allergic reactions to titanium

In their ionic form, metals can be bonded with native proteins to form haptenic antigens, or can trigger the degranulation of mastocytes and basophiles, being capable of developing type I or type IV hypersensitive reactions. [15],[16] Various allergic reactions to titanium mentioned in literature by many authors is listed in [Table 1]. A synopsis of studies of proving allergy to titanium is given in [Table 2].
Table 1: Allergic reactions to titanium

Click here to view
Table 2: Synopsis of the studies related to titanium allergy

Click here to view

The orofacial regions have been associated with types I, III, and IV allergies. One of the most common types of allergy found in the oral cavity is type IV, in which the appearance of characteristic features related to the allergy, can start from a few days to several years from contact with allergens. [31]

Diagnostic test for allergy

Before implant placement

It has been shown that many patients suffer from multiple allergies, [32] and that people with a history of allergy to metals or jewelry have a greater risk of developing a hypersensitivity reaction to a metal implant. [33] Furthermore, although titanium allergy has a low prevalence rate, for patients with a previous history of allergies, it may be advisable to carry out a metal allergy assessment and allergy testing before placing permanent implants, in order to avoid a failure of the implant due to an allergic reaction to titanium.

After implant placement

The failure of implants has been widely studied, and the main causes of dental implant failure are infection and overload. [34],[35],[36] However, some failures are difficult to explain, such as spontaneous rapid exfoliation of the implant, or the successive failure of implants in the same patients, known as "cluster phenomenon", without any infection or overload risk factor identified. Authors agree that in these cases, there must be a systemic determinant of failure that has not been identified or understood. [37],[38]

An allergic reaction can be reasonably suspected after dental implant placement, on the basis of signs or symptoms associated with allergy, such as rash, urticaria, pruritus, swelling in the orofacial region, oral or facial erythema, eczematous lesions of the cheeks or hyperplastic lesions of soft tissue (the peri-implant mucosa). [24] In these cases, allergy testing should be performed.

Diagnostic tests for titanium allergy

Various diagnostic tests are available in the literature. It is difficult to compare the results from different studies related to titanium allergies, because some refer to the use of patch tests, while others use prick tests and/or blood tests. [39],[40]

Patch test

To date no standard patch test for titanium has so far been developed, and positive reactions to titanium have only rarely been demonstrated with skin testing. [32] The sensitivity of patch tests has been shown to be about 75% for type IV metal allergy. Some authors have suggested that 0.1% and 0.2% titanium sulfate solution and 0.1% and 0.2% titanium chloride are successful reagents for the skin-patch tests and could be a valuable alternative to the titanium oxide normally used for patch testing, [41] but so far no study related to dental implants allergies has used the method.

Memory lymphocyte immuno-stimulation assay test

The MELISA test has been validated to detect sensitization to titanium and other metals, [40] but there can be some lack of specificity in lymphocyte proliferation. It would be valuable to have a sensitive and specific test that could help in the diagnosis of titanium sensitization or allergy.

Blood test

Helps in the diagnosis of a type IV allergy.

Lymphocyte transformation test

testing with the Lymphocyte transformation test (LTT) measure lymphocyte proliferation following contact with an allergen is based on the tritiated thymidine incorporation by lymphocytes. Some authors report that there could be that non-relevant proliferation of lymphocytes happen in non-sensitized patients, leading to some false-positive results.

Future prospects in the diagnosis of sensitization or allergy to titanium

Interleukin-17 (IL-17) and Interleukin-22 (IL-22) are produced by a subset of a recently defined T-cell line, known as Th-17. IL-17 has been associated with many inflammatory diseases in humans, including rheumatoid arthritis, organ rejection and asthma. It has been showed that the number of Th-17 cells and the expression of IL-17 were significantly increased in positive patch test biopsies, regardless of the nature of the antigen. [42],[43],[44] IL-22 is a critical mediator in mucosal host defense, which has complex pro-inflammatory and anti-inflammatory and autoimmune effects. It has been shown that patients with contact dermatitis to nickel had a significantly higher IL-22 blood level, compared with control, [45] indicating a possible involvement of IL-22 in the pathogenesis of human allergic contact dermatitis.

It would be interesting to develop a blood test, based on the measurement of the production of IL-17 and/or IL-22 by lymphocytes, in order to be able to diagnose with certainty a sensitization to titanium.

   Discussion Top

Investigations have been carried out about hypersensitivity reactions with titanium orthopedic implants; therefore it is not certain as to what extent the discoveries can be extrapolated to the oral cavity and dental implants. The intraosseus contact surface is smaller in dental implants than in orthopedic ones, [5],[46] which may be particularly important considering that bone has a very low reactivity potential. On the other hand, oral mucosa and the skin behave very differently from an immunological point of view, partially because of the influence of specific immune systems for each organ, such as skin-associated lymphoid tissue and mucosa-associated lymphoid tissue. A practical application is that, in mucosa, the number of Langerhans' cells, which act as antigen-presenting cells, is much smaller. [15],[21],[47] It is because of this, and perhaps also because of its reduced permeability, that oral mucosa must be exposed to allergen concentrations 5-12 times greater than the skin in order to cause tissue microscopic reactions. Moreover, contact between the metal and the host is hampered, as the implant and prosthetic structures in the oral cavity are coated with a layer of salivary glycoprotein, which act as a protective barrier. [47]

It is important to recognize the difference between the presence of immunocompetent cells in tissues and clinical features consistent with hypersensitivity. In the future, our understanding of titanium allergy would be advanced by a comparison of histologic features in symptomatic and asymptomatic patients with titanium implants in the maxillofacial region. Sensitivity to titanium is characterized by the local presence of abundant macrophages and T lymphocytes and the absence of B lymphocytes, indicating Type 4 hypersensitivity. Researches are going on to develop a technique using flow cytometry, for the purpose of detecting the activation of lymphocytes stimulated by a metal, and measuring different mediators (cytokines, inflammatory mediators) released in response to the metal.

Evaluation of skin sensitization potential of nickel, chromium, titanium and zirconium salts done by Ikarashi et al., [48] proved that a significantly large amount of titanium ion was required to elicit a skin reaction. The amount of titanium ion released from titanium alloys has been considered small because of the surface stabilization and the corrosion resistivity of titanium oxide formed on the surface of titanium alloys. These results may explain the rare case of contact sensitization to titanium.

Incidence of titanium sensitivity is increasing as its use in dentistry is increasing day by day. Research has now focused on designing alternative substitutes to titanium. One of the most promising novel materials is Polytheretherketone (PEEK), which is a partially crystalline polyaromatic linear thermoplastic (typically of 30-35% crystallinity). PEEK offers a set of characteristics superior for biomaterials including excellent mechanical properties. Studies suggest that the implantable grade PEEK has bone forming capacity comparable to rough titanium. [49]

   Conclusion Top

Improvements in health care and increased life expectancy of the population demand the design of implant biomaterials demonstrating no or minimal deleterious effects on host tissues. Although traditional materials, such as titanium or its alloys have been widely used and promote osseointegration, there are some concerns such as metal ion and debris release; allergic responses and sensitization. Better understanding and more research are necessary for acquainting the cause of allergy and development of new diagnostic tools for allergic reaction of Titanium. PEEK can be one of such alternatives which could provide a versatile foundation material that could be further suited to a particular purpose through readily tailoring its bulk or surface properties.

   References Top

1.Elias C, Lima J, Valiev R, Meyers M. Biomedical applications of titanium and its alloys.  J Miner Met Mater Soc 2008;60:46-9.  Back to cited text no. 1
2.Smith D, Lugowski S, Mchugh A, Deporter D, Watson P, Chipman M. Systemic metal ion levels in dental implant patients. Int J Oral Maxillofac Implants 1996;12:828-34.  Back to cited text no. 2
3.Sykaras N, Iacopino A, Marker V, Triplett R, Woody R. Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 1999;15:675-90.  Back to cited text no. 3
4.Frisken KW, Dandie GW, Lugowski S, Jordan G. A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Aust Dent J 2002;47:214-7.  Back to cited text no. 4
5.Akagawa Y, Abe Y. Titanium: The ultimate solution or an evolutionary step? Int J Prosthodont 2003;16 Suppl:28-9.  Back to cited text no. 5
6.Hensten-Pettersen A. Casting alloys: Side-effects. Adv Dent Res 1992;6:38-43.  Back to cited text no. 6
7.Basketter DA, Whittle E, Monk B. Possible allergy to complex titanium salt. Contact Dermatitis 2000;42:310-1.  Back to cited text no. 7
8.El Salam, El Askary. Reconstructive Aesthetic Implant Surgery. Oxford, UK: Blackwell Publishing Ltd; 2003.  Back to cited text no. 8
9.Roitt IM, Delves PJ. Essential Immunology. 10 th ed. London: Blackwell Science Ltd; 2001.  Back to cited text no. 9
10.Parr GR, Gardner LK, Toth RW. Titanium: The mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent 1985;54:410-4.  Back to cited text no. 10
11.Abdallah HI, Balsara RK, O'Riordan AC. Pacemaker contact sensitivity: Clinical recognition and management. Ann Thorac Surg 1994;57:1017-8.  Back to cited text no. 11
12.Torgersen S, Gjerdet N, Erichsen E, Bang G. Metal particles and tissue changes adjacent to miniplates: A retrieval study. Acta Odontol 1995;53:65-71.  Back to cited text no. 12
13.Haug RH. Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures. J Oral Maxillofac Surg 1996;54:611-7.  Back to cited text no. 13
14.Matthew IR, Frame JW. Ultrastructural analysis of metal particles released from stainless steel and titanium miniplate components in an animal model. J Oral Maxillofac Surg 1998;56:45-50.  Back to cited text no. 14
15.Schramm M, Pitto RP. Clinical relevance of allergological tests in total hip joint replacement. In: Willmann G, Zweymuller K, editor. Bioceramics in Hip joint replacement. New York, USA: Thieme; 2000. p. 101-6.  Back to cited text no. 15
16.Hallab N, Merritt K, Jacobs J. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 2001;83:428-36.  Back to cited text no. 16
17.Lhotka C, Szekeres T, Fritzer-Szekeres M, Schwarz G, Steffan I, Maschke M, et al. Are allergic reactions to skin clips associated with delayed wound healing? Am J Surg 1998;176:320-3.  Back to cited text no. 17
18.Valentine-Thon E, Schiwara HW. Validity of MELISA for metal sensitivity testing. Neuro Endocrinol Lett 2003;24:57-64.  Back to cited text no. 18
19.Tamai K, Mitsumori M, Fujishiro S, Kokubo M, Ooya N, Nagata Y, et al. A case of allergic reaction to surgical metal clips inserted for postoperative boost irradiation in a patient undergoing breast-conserving therapy. Breast Cancer 2001;8:90-2.  Back to cited text no. 19
20.Thomas P, Bandl WD, Maier S, Summer B, Przybilla B. Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: Case report and review of the literature. Contact Dermatitis 2006;55:199-202.  Back to cited text no. 20
21.Thomas P. Allergological aspects of implant biocompatibility. In: Willmann G, editor. Bioceramics in Hip Joint Replacement: Proceedings 5 th International Ceram Tec Symposium, Febr. 18/19, 2000;25 Tables. New York: George Thieme Verlag; 2000. p. 117-21.  Back to cited text no. 21
22.Matthew I, Frame JW. Allergic responses to titanium. J Oral Maxillofac Surg 1998;56:1466-7.  Back to cited text no. 22
23.Bircher AJ, Stern WB. Allergic contact dermatitis from 'titanium' spectacle frames. Contact Dermatitis 2001;45:244-5.  Back to cited text no. 23
24.Mitchell DL, Synnott SA, Van Dercreek JA. Tissue reaction involving an intraoral skin graft and CP titanium abutments: A clinical report. Int J Oral Maxillofac Implants 1990;5:79-84.  Back to cited text no. 24
25.Hunt J, Williams D, Ungersbock A, Perrin S. The effect of titanium debris on soft tissue response. J Mater Sci Mater Med 1994;5:381-3.  Back to cited text no. 25
26.Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W. Tissue reaction to bone plates made of pure titanium: A prospective, quantitative clinical study. J Mater Sci Mater Med 1995;6:223-9.  Back to cited text no. 26
27.Lim H, Lee K, Koh Y, Park S. Allergic contact stomatitis caused by a titanium nitride-coated implant abutment: A clinical report. J Prosthet Dent 2012;108:209-13.  Back to cited text no. 27
28.Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MA. Sensitivity to titanium. A cause of implant failure? J Bone Joint Surge Br 1991;73:25-8.  Back to cited text no. 28
29.Pigatto PD, Berti E, Spadari F, Bombeccari GP, Guzzi G. Exfoliative cheilitis associated with titanium dental implants and mercury amalgam. J Dermatol Case Rep 2011;5:89-90.  Back to cited text no. 29
30.Egusa H, Ko N, Shimazu T, Yatani H. Suspected association of an allergic reaction with titanium dental implants: A clinical report. J Prosthet Dent 2008;100:344-7.  Back to cited text no. 30
31.Chaturvedi TP. Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent 2013;5:57-61.  Back to cited text no. 31
32.Forte G, Petrucci F, Bocca B. Metal allergens of growing significance: Epidemiology, immunotoxicology, strategies for testing and prevention. Inflamm Allergy 2008;7:1-18.  Back to cited text no. 32
33.Hallab M, Mikecz K, Vermes C, Skipor A, Jacobs J. Differential lymphocyte reactivity to serum-derived metal-protein complexes produced from cobalt-based and titanium-based implant alloy degradation. J Biomed Mater Res 2001;56:427-36.  Back to cited text no. 33
34.Esposito M, Hirsch J, Lekholm U, Thomsen P. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: A review of the literature. Int J Oral Maxillofac Implants 1999;14:473-90.  Back to cited text no. 34
35.Esposito M, Lausmaa J, Hirsch J, Thomsen P. Surface analysis of failed oral titanium implants. J Biomed Mater Res 1999;48:559-68.  Back to cited text no. 35
36.Esposito M, Thomsen P, Ericson L, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 1999;14:798-810.  Back to cited text no. 36
37.Wood M, Vermilyea S. A review of selected dental literature on evidence-based treatment planning for dental implants: Reports of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J Prosthet Dent 2004;94:447-62.  Back to cited text no. 37
38.Chuang S, Cai T, Douglass C, Wei L, Dodson T. Frailty approach for the analysis of clustered failure time observation in dental research. J Dent Res 2005;84:54-8.  Back to cited text no. 38
39.Sicilia A, Cuesta S, Coma G, Guisasola C, Ruiz E, Maestro A. Titanium allergy in dental patients: A clinical study on 1500 consecutive patients. Clin Oral Implants Res 2008;19:823-35.  Back to cited text no. 39
40.Müller K, Valentine-Thon E. Hypersensitivity to titanium: Clinical and laboratory evidence. Neuro Endocrinol Lett 2006;27:31-5.  Back to cited text no. 40
41.Okamura T, Morimoto M, Fukushima D, Yamane G. A skin patch test for the diagnosis of titanium allergy. J Dent Res 1999;78:1135.  Back to cited text no. 41
42.Oboki K, Ohno T, Saito H, Nakae S. Th17 and allergy. Allergol Int 2008;57:121-34.  Back to cited text no. 42
43.Zhao Y, Balato A, Fishelevich R, Chapoval A, Mann D, Gaspari A. Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis. Br J Dermatol 2009;161:1301-6.  Back to cited text no. 43
44.Larsen J, Bonefeld C, Poulsen S, Geisler C. IL-23 and IL-17-mediated inflammation in human allergic contact dermatitis. J Allergy Clin Immunol 2009;123:486-42.  Back to cited text no. 44
45.Ricciardi L, Minciullo P, Saitta P, Trombetta D, Saija A, Gangemi S. Increased serum levels of IL-22 in patients with nickel contact dermatitis. Contact Dermatitis 2009;60:57-8.  Back to cited text no. 45
46.Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int J Oral Maxillofac Implants 2000;15:15-46.  Back to cited text no. 46
47.Bass JK, Fine H, Cisneros GJ. Nickel hypersensitivity in the orthodontic patient. Am J Orthod Dentofacial Orthop 1993;103:280-5.  Back to cited text no. 47
48.Ikarashi Y, Momma J, Tsuchiya T, Nakamura A. Evaluation of skin sensitization potential of nickel, chromium, titanium and zirconium salts using guinea-pigs and mice. Biomaterials 1996;17:2103-8.  Back to cited text no. 48
49.Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetherether ketone (PEEK) substrates compared to commercially pure titanium. Biomaterials 2008;29:1563-72.  Back to cited text no. 49

What is new?
Studies show that Titanium acts as a potential allergen, so diagnostic tests are mandatory before implant placements and more stress should be given to fi nd new diagnostic tests as well as to design alternatives to Titanium such as PEEK.


  [Table 1], [Table 2]

This article has been cited by
1 A systematic review of cranioplasty material toxicity in human subjects
David Emmanuel Las, Denis Verwilghen, Maurice Yves Mommaerts
Journal of Cranio-Maxillofacial Surgery. 2021; 49(1): 34
[Pubmed] | [DOI]
2 Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices – A mini review
Ravindra V. Badhe, Obakanyin Akinfosile, Divya Bijukumar, Mark Barba, Mathew T. Mathew
Toxicology Letters. 2021; 350: 213
[Pubmed] | [DOI]
3 Surgical clips metal allergy postlaparoscopic cholecystectomy
Rajiv N. Shah, Frederick Tiesenga, Juaquito Jorge, Arooj F. Chaudhry
International Journal of Surgery: Global Health. 2021; 4(1): e48
[Pubmed] | [DOI]
4 Delayed Titanium Hypersensitivity and Retained Foreign Body Causing Late Abdominal Complications
Molly S. Jain, Sivasthikka Lingarajah, Enkhmaa Luvsannyam, Manoj Reddy Somagutta, Ravi Pankajbhai Jagani, Jay Sanni, Enomfon Ebose, Frederick M. Tiesenga, Juaquito M. Jorge, Muthukumaran Rangarajan
Case Reports in Surgery. 2021; 2021: 1
[Pubmed] | [DOI]
5 A Possible Relationship between Peri-Implantitis, Titanium Hypersensitivity, and External Tooth Resorption: Metal-Free Alternative to Titanium Implants
Andrea Enrico Borgonovo, Rachele Censi, Virna Vavassori, Mauro Savio, Dino Re, Miguel de Araújo Nobre
Case Reports in Dentistry. 2021; 2021: 1
[Pubmed] | [DOI]
6 Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae
Sabine Stoetzel, Deeksha Malhan, Ute Wild, Christian Helbing, Fathi Hassan, Sameh Attia, Klaus D. Jandt, Christian Heiss, Thaqif El Khassawna
International Journal of Molecular Sciences. 2021; 23(1): 374
[Pubmed] | [DOI]
7 The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation
Stefanie Kligman, Zhi Ren, Chun-Hsi Chung, Michael Angelo Perillo, Yu-Cheng Chang, Hyun Koo, Zhong Zheng, Chenshuang Li
Journal of Clinical Medicine. 2021; 10(8): 1641
[Pubmed] | [DOI]
8 Titanium allergy in dentistry: A new allergen in rapidly evolving implant dentistry
Nishi Tanwar, Chander Prakash, Kuldeep Chaudhary, Shikha Tewari, Subramony Bhagavatheeswaran
Contemporary Clinical Dentistry. 2021; 12(3): 317
[Pubmed] | [DOI]
9 Spontaneous anterior abdominal wall expulsion of female sterilization Filshie clips
Hui Men Selina Chin, Song He, Shau Khng Lim
Journal of Case Reports and Images in Obstetrics and Gynecology. 2021; 7: 1
[Pubmed] | [DOI]
Mitchell W. Ponsford, Thomas G. H. Diekwisch
Matéria (Rio de Janeiro). 2020; 26(1): 113
[Pubmed] | [DOI]
11 Utilizing DICOM data to generate custom computer-aided designing and computer-aided machining polyetheretherketone healing abutments for an ear prosthesis
Mohit Dhiman, Sudhir Bhandari, Sunil Gaba
The Journal of Indian Prosthodontic Society. 2020; 20(4): 431
[Pubmed] | [DOI]
12 Interactions of Osteoprogenitor Cells with a Novel Zirconia Implant Surface
Thomas Munro, Catherine M. Miller, Elsa Antunes, Dileep Sharma
Journal of Functional Biomaterials. 2020; 11(3): 50
[Pubmed] | [DOI]
13 Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds
Agata Markowska-Szczupak, Maya Endo-Kimura, Oliwia Paszkiewicz, Ewa Kowalska
Nanomaterials. 2020; 10(10): 2065
[Pubmed] | [DOI]


Print this article  Email this article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (307 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Article Tables

 Article Access Statistics
    PDF Downloaded130    
    Comments [Add]    
    Cited by others 13    

Recommend this journal