Indian Journal of Dermatology
  Publication of IADVL, WB
  Official organ of AADV
Indexed with Science Citation Index (E) , Web of Science and PubMed
Users online: 2116  
Home About  Editorial Board  Current Issue Archives Online Early Coming Soon Guidelines Subscriptions  e-Alerts    Login  
    Small font sizeDefault font sizeIncrease font size Print this page Email this page
Year : 2010  |  Volume : 55  |  Issue : 4  |  Page : 325-328

Assessment of MC1R and α-MSH gene sequences in Iranian vitiligo patients

1 The University of Guilan, Guilan, Rasht, Iran
2 The University of Tabriz, East Azarbayjan, Tabriz, Iran
3 Guilan University of Medical Sciences, Guilan, Rasht, Iran

Correspondence Address:
J Golchai
The Guilan university of medical sciences, Dermatology faculty
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5154.74530

Rights and Permissions

Background: Vitiligo is an acquired pigmentary disorder of the skin that is caused by unknown factors and is characterized by white and depigmented patches that enlarge and become more numerous with time. Genetic factors, oxidative stress, autoimmunity, and neurochemical agents, such as catecholamines might also contribute to vitiligo. Cutaneous pigmentation is determined by the amounts of eumelanin and pheomelanin synthesized by the epidermal melanocytes and interference of melanocortin-1 receptor (MC1R), a G-protein coupled receptor, its normal agonist, alpha-melanocyte stimulating hormone (α-MSH), and key enzymes, such as tyrosinase, to protect against sun-induced DNA damage. The MC1R, a 7 pass trans-membrane G-protein coupled receptor, is a key control point in melanogenesis. Loss-of-function mutations at the MC1R are associated with a switch from eumelanin to pheomelanin production, resulting in a red or yellow coat color. Aim: In this research, we aim to examine the genetic variety of MC1R and α-MSH gene in 20 Iranian vitiligo patients and 20 healthy controls. Materials and Methods: Analysis of the MC1R coding gene was performed with direct sequencing. Results: We found the following 9 MC1R coding region variants: Arg163Gl (G488A), Arg227Leu (G680A), Val 97Phe (G289T), Asp184Asn (G550A), Arg227Lys (G680A), Arg142His (G425A), Val60Leu (G178T), Val247Met (C739A), and Val174Ile (G520A). We also found 2 frameshift changes: one of them was the Insertion of C (frameshift in Pro136, stop at Trp148) and the other, Insertion of G (frameshift in Pro256, stop at Trp 333). Of all the changes, the most common was Val60Leu at 5% in patients vs 20% in controls, Val247Met at 15% in patients vs 0% in controls and Val174Ile at 15% in controls and 0% in patients. The other variants showed a frequency <5% in both patients and controls. Also in this study, we have examined the frequency of single nucleotide polymorphisms within the α-MSH genes with direct sequencing in 20 patients and 20 healthy subjects but found no changes along this gene. Conclusion: We could not find any relationship between MC1R and α-MSH genes and their effect on the disease in Iranian vitiligo patients.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded121    
    Comments [Add]    
    Cited by others 2    

Recommend this journal