Indian Journal of Dermatology
  Publication of IADVL, WB
  Official organ of AADV
Indexed with Science Citation Index (E) , Web of Science and PubMed
Users online: 5041  
Home About  Editorial Board  Current Issue Archives Online Early Coming Soon Guidelines Subscriptions  e-Alerts    Login  
    Small font sizeDefault font sizeIncrease font size Print this page Email this page
Year : 2008  |  Volume : 53  |  Issue : 1  |  Page : 15-20

Application of polymerase chain reaction (PCR) and PCR based restriction fragment length polymorphism for detection and identification of dermatophytes from dermatological specimens

1 Larsen and Toubro Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, No. 18, College Road, Chennai - 600 006, India
2 Government Kilpauk Medical College, Kilpauk, Chennai - 600 010, India
3 Dermatology Clinic (Skin, Hair and Nail Specialist), No. 2c, 2nd Floor, No. 853, Thyagaraya Complex, Poonamalle High Road, Chennai, India

Correspondence Address:
K L Therese
Larsen and Toubro Microbiology Research Centre, Vision Research Foundation, 18, College Road, Sankara Nethralaya, Chennai - 600 006
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5154.39735

Rights and Permissions

Objective: To develop and optimize polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) targeting 18S rDNA and internal transcribed spacer (ITS) region of fungi for rapid detection and identification of dermatophytes. Materials and Methods: Two PCR-RFLP methods targeting 18S rDNA and ITS regions of fungi were optimized using standard and laboratory isolates of dermatophytes and other fungi. Sixty-eight dermatological clinical specimens (nail clippings (56), material obtained from blisters (8), hair root (2), scraping from scaly plaque of foot (1) and skin scraping (1) collected by the dermatologist were subjected to both the optimized PCR-RFLP and conventional mycological (smear and culture) methods. Results: PCRs targeting 18S rDNA and the ITS region were sensitive to detect 10 picograms and 1 femtogram of T. rubrum DNA, respectively. PCR targeting 18S rDNA was specific for dermatophytes and subsequent RFLP identified them to species level. PCR-RFLP targeting the ITS region differentiated dermatophytes from other fungi with identification to species level. Among the 68 clinical specimens tested, both PCR-RFLP methods revealed the presence of dermatophytes in 27 cases (39.7%), whereas culture revealed the same only in 2 cases (7.40%), increasing the clinical sensitivity by 32.3%. Among 20 smear positive specimens, both PCR-RFLP methods detected dermatophytes in 12 (17.6%). Both the methods detected the presence of dermatophytes in 13 (19.11%) smear and culture negative specimens, increasing the clinical sensitivity by 36.1%. Conclusion: PCR-RFLP methods targeting 18S rDNA and the ITS regions of fungi were specific and highly sensitive for detection and speciation of dermatophytes.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded481    
    Comments [Add]    
    Cited by others 12    

Recommend this journal